
1

Bypassing a Web Application Firewall

Wissam El Labban

2

Table of contents

Contents
Required from reader of report .. 3

What is a WAF ... 3

How a WAF works ... 4

Building a penetration testing tool for a WAF .. 5

Pentesting using WAF Bypass Techniques .. 11

The campion of vulnerability finding. Reverse engineering attacks from the ruleset.......................... 16

3

Required from reader of report
To get the full benefit of this report you will need: beginner to intermediate

knowledge of networks, basic understating of ELK stack setup, and internet access.

What is a WAF
We are aware of the concept of firewalls in networks. However, those aren’t enough

to protect our web applications. Those are applications on web servers that host our

websites that are accessible through a client’s web browser. Those connections, however,

are on the higher layer of the OSI model.

The OSI Model shown above has 7 layers, and the traditional firewall only protects

from layers 3-4. This means that a regular firewall will do nothing to stop suspicious

HTTP traffic. A web application firewall on the other hand works on layers 4-7 of the

OSI stack. This combination of firewall and WAF (short for web application firewall)

covers the entire stack and is a necessity for any self-respecting organization to mitigate

risk of their networks, and web applications hosted on them.

Now that we know about WAFs, we will go into the concept of implementing one and

understanding how it works on a deeper level.

4

How a WAF works
A WAF inspects http traffic and passes clients input parameters through its core rule set.

A core rule set (CRS for short) is exactly what it sounds like. A set of rules that if violated,

would block a user from processing a request that the WAF would consider dangerous.

Where should a WAF be on the network of an organization? From a network architecture

perspective, a WAF should sit between a traditional firewall and a web server. A general

understanding is in the image below.

A firewall will be the first line of defence to filter out known attacks on the lower

level of the OSI model. If that firewall does not detect a dangerous request, then the

connection will go on to the WAF. If the WAF does not detect a dangerous request, then that

request will go through to the web servers.

Keep in mind that this setup is meant to mitigate risk and is not a 100% effective solution to

stop any external attacker as I will demonstrate soon how a WAF can be bypassed.

5

Building a penetration testing tool for a WAF

This is where the fun begins. I will be building an Ideal setup for pen testing a WAF. For

my WAF, I will be using mod security. This is an open-source web application firewall that

can be downloaded from GitHub alongside its CRS made by the OWASP organisation. The

server that mod security will sit on is an ubuntu server running the Nginx web service. Mod

security which is an Apache built service will be using a Nginx connector to connect and

function in tandem with Nginx.

For the Web application, I will be using the DVWA web application. This again is an

open-source web application that can be downloaded from GitHub. DVWA will be a website

with web applications that will take parameters. There are different levels of code that protect

the web application from malicious requests. For this test, I will be keeping the security of

those applications on low. At that level, there is no security whatsoever on the coding layer.

The only line of defence will be the mod security-nginx WAF. The DVWA server will run on

kali Linux, a Debian based Linux distribution like ubuntu.

The image above is from the Modsecurity-Nginx WAF. It will be connecting to our

DVWA server via a reverse proxy connection. This is a connection Nginx provides to

connect to backend servers on the http level. We have enforced mod security rules on that

connection to our dvwa server.

We will of course have an attacker machine. This machine will be connected to our

Modsecurity-Nginx WAF. This machine will be a kali Linux machine.

6

Now our network looks like this:

This setup may seem like enough, but in order to pen-test a WAF properly, we need to

understand which rules are being violated and how to bypass them. Every time a rule is

violated, and a block happens, mod security logs it in the audit log as seen below.

However, there is an overload of information that anyone would find daunting. To

circumvent this issue, I will be using the Elasticsearch service to read and display logs.

7

Our modified network will now look like this:

The Elasticsearch server is a service running on ubuntu using the ELK stack (Elasticsearch,

Logstash, Kibana). My logs will go from the mod security audit log in the WAF to the

Elasticsearch server using the file beats service.

8

The two images above are of the file beats config sending logs to the logstash component of

the Elasticsearch server.

The image below is of the configuration in our /etc/logstash/conf.d/logstash.conf file

receiving the modsecurity auditlog info from the logstash port, parsing json, and then sending

it to elasticsearch where the information will be presented by kibana in the “modsec” indice.

We will now have a modsec index that shows information from our modsecurity_audit log.

We do not have a DNS server on our network. So to let our attacker resolve the host names of

the websites, we will go into the etc/hosts file of the attacker machine and make the following

changes:

9

Now let’s go to dvwa.com and do a violation.

Now let’s go to our mod security index.

10

All the information we need is presented in a beautiful format that gives us the data in real

time. We can see our rule ID, and what illegal parameter got patched and to which rule as

well as the order of rules that were triggered.

Our setup is now complete. Its time for some penetration testing.

11

Pentesting using WAF Bypass Techniques
I will be using a set of techniques from the two following sources:

https://hacken.io/researches-and-investigations/how-to-bypass-waf-hackenproof-cheat-sheet/

https://owasp.org/www-pdf-archive/OWASP_Stammtisch_Frankfurt_-

_Web_Application_Firewall_Bypassing_-_how_to_defeat_the_blue_team_-_2015.10.29.pdf

The technique grading scheme will be as follows:

Grade Meaning

fail Complete failure

null Bypassed but gave no output

partial pass Bypassed but gave useless output

Pass Bypassed and gave desired output

The pass grade is the only desirable outcome on this list.

➢ Command and injection:

127.0.0.1 (| |) echo "hack"

The above command was a bypass that was found at random

➢ SQL Injection

‘ select * from password

Case toggling technique: fail

Then we used every case combination of select and performed a simple list attack only to get 403 on

every response (403 forbidden page by nginx WAF).

https://hacken.io/researches-and-investigations/how-to-bypass-waf-hackenproof-cheat-sheet/
https://owasp.org/www-pdf-archive/OWASP_Stammtisch_Frankfurt_-_Web_Application_Firewall_Bypassing_-_how_to_defeat_the_blue_team_-_2015.10.29.pdf
https://owasp.org/www-pdf-archive/OWASP_Stammtisch_Frankfurt_-_Web_Application_Firewall_Bypassing_-_how_to_defeat_the_blue_team_-_2015.10.29.pdf

12

Our logs had the same rules triggered with every case of select *. This meant that case changing

technigues would not help in this command

URL encoding technique: fail

We endoded our paylod into the url and found that that did not work

1%27%20select%20*%20from%20password

13

It is also worth noting that case toggling in addition to the URL encoding technique did not work

since the WAF can detect all variations of select * case toggle just like we found before

Unicode technique: null

We were able to bypass the waf using the Unicode technique

We converted 1’ select * from password into utf-16, utf-32, utf-8, and decimal encoding and the

technique was not caught by the WAF.

14

While the technique did not trigger any WAF rules, we still did not get any viable output.

Double url encoding: partial pass

Double encoded 1’ select * from password but still did not get any valid input

Junk characters technique: Pass

http://dvwa.com/vulnerabilities/sqli/?id=1+%27s+-+-1-+-+e+-+l+e+c+t+-+-+-+*+-+-+-

+from+password&Submit=Submit#

http://dvwa.com/vulnerabilities/sqli/?id=1+%27s+-+-1-+-+e+-+l+e+c+t+-+-+-+*+-+-+-+from+password&Submit=Submit
http://dvwa.com/vulnerabilities/sqli/?id=1+%27s+-+-1-+-+e+-+l+e+c+t+-+-+-+*+-+-+-+from+password&Submit=Submit

15

The technique was a complete success as I obfuscated the payload in the most confusing way

possible. The server does not handle the request 1’ select * from password and displays a blank page

as its version of an sql error. It is worth noting however that we received a waf log with no input

While using those techniques if great for understanding how a WAF behaves, it is inefficient and can

take time to find a desired bypass. If I were an outside attacker brute forcing techniques in this

manner from a single IP, then an enterprise CSOC team (Cybersecurity Operations centre/ Blue

team) would pick up my activity from their SIEM and block my IP address and/or range.

However, in this situation, I am a pen tester with access to the core rule set of the WAF and a real

time input of rules triggered. This gives us a beautiful opportunity to find vulnerabilities in a more

efficient way. Reverse engineering attack from the ruleset.

16

The campion of vulnerability finding. Reverse engineering attacks

from the ruleset

Using information from the logs, we will identify and examine the rules triggered, and view the

matched expressions in the rules and find alternatives to them. We will also use the regex

expressions to derive obfuscation and bypasses.

Command injection:

Let’s try the command, echo

This command obviously got blocked by our WAF.

But looking at Elasticsearch we can see the rule which blocked it:

We can also see that our command was matched to a regular expression

The data for those regular expressions are found in the util/regexp-assemble/data/ folder.

This can be seen in the comments of the 932-rule file itself (located in the rules directory).

17

In the data file itself. We found echo sure enough.

We can also see that there are starting operators (since command injections are added to a

parameter of an already existing command in a website text bar)

18

However. There are some commands that are not listed within the data file. 3 examples of

commands that were not found are dir., who, and w. after hitting submit, the passed through the

waf with no issue as demonstrated below.

Dir

Dir is another command that substituted the blocked ls command

19

W

Who

While those exploits are there does that mean that there are ironclad rules against listed commands

like echo?

No. not by a longshot.

In Linux we can obfuscate our code with simple string separators like ‘’.

Let’s go deeper into regex and input the regex code from our rule into regex101. This Is a website

that can test regex with matches.

20

 In the image below, we can see that the command echo got caught by our ruleset as expected.

However, using obfuscation, this command bypasses the ruleset.

Now that we bypassed that rule, we’re all good right? Well… Not quite.

Let’s try the command; e’’c’’h’’o “a”

Our WAF caught it with the flowing rules triggered:

21

Keep in mind that rule 932100 is a different rule than the rule that our regex expression bypassed

(rule 932110).

The next step is to repeat our process until we bypass that rule.

Lets look at our regex expression for rule 932110

Sure enough, it got caught.

Let’s try the a different expression that won’t get caught.

22

And it was able to go through the WAF.

We bypassed all rulesets. However, this output isn’t exactly meaningful of life destroying.

Encoding isn’t a situation that can help us here since we only get post requests

23

• Conclusion

A WAF is a must have tool for organization willing to protect their web applications. However, it

should not be the only line of defence. It is also a coders job to secure web applications by adding

more secure code (ex: only enter an IP address or reject the input).

As for the mod security WAF, it is a decent WAF as far as mitigating risk from general attacks.

However, it has vulnerabilities that can easily exploited by a seasoned hacker. My pen testing level at

the time of this is novice and even I was able to find some vulnerabilities with a bit of effort. On top

of that this WAF has no machine learning capabilities, so it has the capacity to generate many false

positives. (ex: let’s say someone’s name was ; sudo (very unlikely scenario)). Some WAFs can learn

how their web applications work in order to understand how to protect them better unlike our

open-source mod security WAF. Moreover, our modsecuity core rule set Is open-source and

available to the public. An attacker who knows the WAF model and CRS can engineer an attack that

can be bypassed and harm a vulnerable web application. Overall, I strongly discourage any

organization to use this WAF to protect their web applications. As a learning tool however, it is

perfect for a novice pen tester like me to understand how to bypass such a device and understand

how WAFs Work.

